data assimilation
-1
archive,tag,tag-data-fusion,tag-86,bridge-core-2.3.9,qode-page-transition-enabled,ajax_fade,page_not_loaded,,qode-title-hidden,qode-theme-ver-29.2,qode-theme-bridge,qode_header_in_grid,wpb-js-composer js-comp-ver-6.2.0,vc_responsive,elementor-default,elementor-kit-16106

This study introduces a novel wall shear stress (WSS) estimation method for 4D flow MRI. The method improves the WSS accuracy by using the reconstructed pressure gradient and the flow-physics constraints to correct velocity gradient estimation. The method was tested on synthetic 4D flow data...

Pharmaceutical industry focuses on developing prefilled syringe and autoinjector (AI) products by expanding features and capabilities. However, most of them might not be aware of an undesired phenomenon that may occur during drug solution injection called cavitation collapse. Cavitation is a phenomenon in which rapid...

4D flow magnetic resonance imaging (MRI) allows for the in vivo acquisition of time-resolved three-dimensional (3D) blood flow, enabling the evaluation of hemodynamic quantities for cerebral aneurysms (CAs). However, the accuracy of flow-derived hemodynamic quantities such as pressure and wall shear stress (WSS) is affected...

4D flow magnetic resonance imaging (MRI) allows for in vivo acquisition of time-resolved three-dimensional (3D) blood flow, thus enabling quantitative analysis of volumetric, time-varying hemodynamic quantities such as flow rates, wall shear stress (WSS), pressure difference, etc. 4D flow MRI is based on the phase...

Measurement of pressure in a fluid flow is essential in engineering applications as well as in investigations of flow physics. Pressure measurement devices such as wall pressure ports, static tubes, pressure-sensitive paint, etc., can be invasive, and provide only point measurements or a surface distribution....